

IEEE - Best of Both Worlds SubSea Valve Motion Control

Presented by: David Geiger

Date:

6/16/2020

Motion Control Technology Comparison

General Technology Comparison pro contra **EMA** EHA EH HYDRAULIC TRANSMISSION SPEED CONTROL BALL SCREW HYDRAULIC CYLINDER GEARING SPEED CONTROL 0 111111 EN M) CONTROL ELECTRONICS MECHANICAL ROTARY TO CONTROL ELECTRONICS FIXED AND VARIABLE LINEAR CONVERTOR AND VARIABLE SPEED MOTOR DISPLACEMENT TRANSMISSION ROTARY TO LINEAR CONVERTOR SPEED MOTOR + efficiency + efficiency + high forces + easy mounting, + easy mounting, + compact design (without power unit!) commissioning commissioning + easy maintenance + gearbox ratio + fail safe opportunities unlimited - wear + fail safe opportunities - backlash - efficiency + weight - weight - additional power + no wear, no backlash unit needed - mechanical gearbox + cylinder reliability can block - complex piping - maintenance - stiffness - single movement only - possibility of serial + possibility of parallel movements movements 3

Moog EHA: Company Background – Actuation Heritage

Moog Proprietary and/or Confidential Data

Why did Aircraft Industry Go with EHA Technology Instead of EMA Technology

Aircraft Industry Primary Flight Control Requirements:

- No single failure should prevent the aircraft from flying.
 - Systems Require Redundancy
 - Output mechanism of actuator can not have a risk of Jamming
 - Electromechanical Screws have a potential failure mode of Screw Jamming
 - Hydraulic Cylinders potential failure mode is not Jamming instead it is Leakage

By Wire Solution for the Aircraft is EHA

- Electric Drive
- Hydrostatic Transmission (instead of electromechanical transmission)

Latest Generation of Military and Commercial Aircraft use EHA for Primary Flight Control

- F35
- A350
- 787

SubSea Movement to Electrification

SubSea Electrification

•SubSea Equipment is moving towards Electrification:

-Lower overall costs since large hydraulic power lines are not required to run from ocean surface to subsea

-Less components which results in higher reliability

-Easier to implement Prognostics, Automation, Autonomous Operation and the Internet of Things (IoT)

•SubSea Today:

-Has moved the Hydraulic Power Unit and Accumulators to Ocean Floor. Still use original hydraulic actuation circuits

•Would like to move to full Electrification, however several challenges remain:

-Cost to change technology is high

-End user struggle with the Risk associated with the new technology

-Screw Jamming Risk

Moog proprietary and/or confidential data

EHA - Best of Both Worlds

•Utilize the key Hydraulic Elements:

-Keep the Robustness and Power Density of current Hydraulic System

-OEM can use existing hydraulic cylinder and spring failsafe

-OEM do not need to make major mechanical changes to the existing equipment

•Distributed Electric Power Unit & Controls:

-Many small compact electro hydrostatic power units can be integrated along side existing hydraulic cylinders.

-Enables a high connected system for the next generation of SubSea Controls

-Advanced Prognostics

-Automation

-loT

Electro Hydrostatic Power Unit - EPU

MOOG

MOOG Moog's Industrial Electro Hydrostatic Power Unit - EPU

Electro Hydrostatic Power Unit - EPU

interface for manifold assembly

Moog proprietary and/or confidential data

MO

Electro Hydrostatic Power Unit - EPU

Moog proprietary and/or confidential data

Servo Motor Capability

Features

- •Light weight, high power density motors
- •Custom voltages, speed and torque
- Proven Laminations
- SmCo Magnets
- Specific stack & windings
- •Screw integrated into the Motor

MC

Permanent Magnet Brushless Motor Capability

High Torque Density Qualified magnetic circuits

- Variant designs
- Full Custom Designs
 - FEA based

Environmental Conditions

- 1300 2000 Bar
- Ambient 200°C

Robust Hardened design

- Sleeved encapsulated rotors
- High temperature insulation systems
- Chemical compatibility
- Shock: 500G 11ms, Sine Pulse
- Vibe: 10-2000 Hz, 0.06 double Amplitude

Motors - EM Design

MOOG

FEA Electro-Magnetic design

Dynamometer performance validation

Moog proprietary and/or confidential data

Case Study - Xtree

Current Hydraulic Powered X-Tree Gate Valves

Moog proprietary and/or confidential data

MOOG

Reliable Cost Effective Electro Hydrostatic System

•Electro Hydrostatic Power Unit is a common size

•Use two Electric Drive Canisters and strategically select valves for electric system redundancy

•Reducing mechanical component increases reliability from SIL 1 to SIL 2

X-Tree Valves

X-Tree Valves:

Well Fluid Flow and Chemical Injection Gate Valves:

Linear Failsafe Actuator Required:

- 40,000 lbf (4 Valves) Annulus Wing 2" Valve Annulus Master 2" Valve Annulus Swab 2" Valve Cross over 2" Valve

-(7") 230,000 lbf (4 Valves) or -(5") 130,000 lbf (4 Valves) Production Swab 5" or 7" Valve Production Upper Master 5" or 7" Valve Production Lower Master 5" or 7" Valve Production Wing 5" or 7" Valve

One EPU Size for all Applications

		SubSea EPU - Xtree		
		40000lbf - 2" Valve	130000lbf - 5" Valve	230000lbf -7" Valve
Motor Voltage (G6-V-4)	VDC	315	359	469
Motor Current	Arms	19	19	35
Motor/Pump Speed	RPM	2800	3000	3700
Pump set displacement	cu.cc/rev	10	10	19
Drive Power Requirment	kVA	6	7	17
Time for Stroke	seconds	3	21	21

Xtree - Scope of Supply

Moog proprietary and/or confidential data

Current Mechanical System Design Analysis – SIL 1

Component non-redundant Using 1001 formula from IEC 61508-6 Annex B	β Factor Used	DC Value Used	λ _d	#	Total λ _d	
Manual valve - accumulator			2.90E-07	1	2.90E-07	
Solenoid Valve - N/O			9.30E-08	1	9.30E-08	
Spring return two way valve			1.67E-08	1	1.67E-08	
Check valve			3.05E-08	2	6.10E-08	
Fittings			2.54E-08	12	3.04E-07	
Piperupture			5.87E-08	8	4.70E-07	
Pressure Gauge			1.77E-07	1	1.77E-07	
Accumulator			8.28E-07	1	8.28E-07	
Cylinder and actuator (MTTFd developed from Moog gas valve history)			1.25E-09	1	1.25E-09	
Sum of non-redundant devices 2.						
Result						
(Sum of groups above)	2.25E-06					

22

Moog proprietary and/or confidential data

Moog Mechanical EPU Design Analysis – SIL 2

Used ISO 13849-1 and IEC 61508-6 analysis methods to determine failure rates

Component non redundant Using 1001 formula from IEC 61508 ⁻ 6 Annex B	β Factor Used	DC Value Used	λď	#	Total λ_d	
Motor (Hardware Failure Tolerance of 1) (from G series field data 2007 to 2013) (Checked continuously during normal operation)			9.97E-08	1	9.97E -08	
Pump (MTTFd taken from industrial piston pump)	Not required	Not required	3.81E -07	1	3.81E-07	
Check valve Fittings			3.05E -08 2.54E -08	6 4	1.83E-07 1.01E-07	
Cylinder and actuator (MTTFd developed from Moog gas valve history)			1.25E -09	1	1.25E-09	
Sum					7.66E -07	

Moog proprietary and/or confidential data

Thank you

David Geiger

dgeiger@moog.com 716-706-8277