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Intel Silicon Phonics: Optics at Silicon Scale

EPIC WPTS, San Francisco, January 24th, 2022
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(b) Indium phosphide (InP), the light-emitting 

material, is bonded to the top of the silicon 

with a thin layer of glass glue.
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A hybrid silicon laser. (a) Key components. (b) Scanning electron 

micrograph of the fabricated device. (c) Schematic.



Intel is the only company who is 

in high volume manufacturing 

of Silicon Photonic



Co-Packaged Optics (CPO)

or

Heterogeneous Integration of 

Electrical IC (EIC) and 

Photonic IC (PIC) Packaging



(a) (b)

(a) Google data center. (b) Transceivers in a data center.
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➢ Optical Transceiver is a key component of an optical transmission system that permits coupling of the 
transmission medium with the active components of the chain, such as switches, routers - optical 
interfaces or any optical transport equipment.

➢ Transceiver is defining the process of converting electric signaling toward the optical transmission with the 
help of TOSA (Transmission Optical Sub Assembly) or Tx module and performing inverse action through 
the ROSA (Receiver Optical Sub Assembly) or Rx module. 

➢ A TOSA contains a semiconductor laser diode (LD) and laser driver, while a ROSA contains a photodiode 
(PD), optical interface such as lens, TIA (transimpedance amplifier), and passive electrical interface.

➢ TOSA module converts the electrical signal to the optical transmission light that lands on the fiber. The 
ROSA is used to receive an optical signal from a fiber and convert it back into an electrical signal.

Transceivers



Driver

TiA PD

Laser

O
p

ti
c

a
l

S
ig

n
a

l

E
le

c
tr

ic
a
l 

S
ig

n
a

l

ASIC/Switch

Fibers

Transceiver
EIC PIC

Driver

TiA PD

Laser

O
p

ti
c

a
l

S
ig

n
a

l

E
le

c
tr

ic
a
l 

S
ig

n
a

l

ASIC/Switch

Fibers

TransceiverTOSA

ROSA

(a)

(b)

Key components in an optical transceiver. (a) TOSA and ROSA. 

(b) PIC and EIC.



Pluggable Transceiver

PCB

Pluggable Transceiver

Fiber



Pluggable Optics
On-Board Optics 

(OBO) 

Front-Panel Pluggable Optics On-Board Optics
(OBO)

Near-Package Optics
(NPO)

Co-Packaged Optics
(CPO)

ASIC
Substrate

OE/EE

Co-Packaged Optics 

(CPO)

ASIC

Substrate

PCB

OE/EE

(d)(c)(b)

ASIC (LR)

Package Substrate

PCB

Pluggable 
Transceiver

Fiber

PCB

ASIC
Substrate

Pluggable Transceiver

PCB

(a)

Near-Package Optics 

(NPO)

PCB PCB

OE/EE

ASIC
Substrate

PCB

High Performance Substrate

Fiber

ASIC (XSR+)

PCB

OE/EE
Fiber Connector

Pigtail fiber

Fiber

ASIC (XSR+)

PCB

OE/EEPackage Substrate

Package Substrate Optical Substrate

High Performance Substrate

Fiber 
Connector

Pigtail fiber

Fiber

Pigtail fiber

PCB

OE/EE
XSR + DSP

Optics Substrate
(optional)

ASIC (XSR)

Co-Packaged Substrate

Fiber Connector

(Optional)

TIME

2000 2018 2020 2023



Intel’s co-packaged optics switch



Broadcom’s co-packaged optics switch

https://www.servethehome.com/awesome-broadcom-co-packaged-optics-and-silicon-photonics-ocp-summit-2022/broadcom-co-packaged-optics-ocp-summit-2022-2/
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2D heterogeneous integration of EIC and PIC
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Co-Packaged Substrate (TSV-interposer or Organic-interposer)

2D heterogeneous integration of ASIC, EIC and PIC. (a) On an ordinary co-packaged substrate. (b) On TSV-
interposer or organicinterposer. (c) On TSV-interposer or organicinterposer and then on package substrate.
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substrate. (a) Bridge with µbumps. (b) Bridge with hybrid bonding. (c) EMIB.
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The objective of EMIB is to replace TSV-Interposer (2.5D IC Integration) 26

EMIB Basmati Rice

Intel’s EMIB (Embedded Multi-die Interconnect Bridge)
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➢ 47 Chiplets (16 HPC)

➢ 16 Thermal dies

➢ Max. size = 41mm2

77.5mm x 62.5mm (11-2-11)

(11)

(2)

(8)

(8)

(2)

(650mm2)

Intel’s Chiplet Design and Heterogeneous Integration Packaging:- 

Ponte Vecchio GPU

28IEEE/ISSCC 2022



EMIB (Embedded Multi-Die Interconnect Bridge) for Sapphire Rapids
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IBM’s Direct Bonded Heterogeneous Integration 

(DBHi) Si Bridge
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BRIDGE

CHIPLET

C4 bump
UBM

C2 bumpCu

Build-up Package Substrate with Cavity
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(b)

a) C2 bumps on the bridge, while C4 bumps on the chiplet.

b) Ordinary build-up package substrate with a cavity.

Chip 1

C4 bump

Chip 2

C4 bump

IBM’s DBHi Key Process Steps
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a) TCB/NCP of bridge die with C2 μbumps on Chip 1 with C4 bumps (NCP becomes the underfill).

b) TCB/NCP of Chip 2 with C2 μbumps on the bridge with the bonded Chip 1.

c) Place the module (bridge + Chip 1 + Chip 2) on the substrate and mass reflow the C4 bumps. Apply the capillary underfill to the C4 bumps.

Chip 2

IBM’s DBHi Key Process Steps
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Direct Bonded Heterogeneous Integration (DBHi): Surface bridge 

approach for die tiling

ECTC2023

Chip A Chip B

Si BridgeC2 Cu-pillar bump µC4 bump
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Improvements of IBM’s DBHi

➢ The Si-bridge is not in the cavity of a package substrate

➢ Thickness of Si Bridge = 60 - 70µm

➢ Dimensions of Bridge = 3.5mm × 2.5mm x 60-70µm

➢ Nonconductive paste → Solder and Reflow

Chip A Chip B

Si BridgeC2 Cu-pillar bump µC4 bump

Bridge-Side

Chip-Side

Package-Side

Chip-Side

Package

ECTC2023



M1 Max

M1 Max

Apple’s UltraFusion 

(M1 Ultra = M1 Max + M1 Max + Si Bridge)

UltraFusion — Apple’s innovative packaging architecture that interconnects the die of two M1 Max chips to 

create a system on a chip (SoC) with unprecedented levels of performance and capabilities. TSMC assembled 

the package with silicon bridge what TSMC called LSI (local silicon interconnect).

Shipped in March 2022
35
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Apple’s UltraFusion with TSMC’s LSI (Bridge) Shipped in March 2022
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AMD’s Instinct MI250X Compute Accelerator 

(GPU/HBM2 Interfaced with Si Bridge on Fan-out RDLs)
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Bridge Embedded in Fan-Out 

Epoxy Molding Compound (EMC) 

with Redistribution-Layers 

(RDLs)
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C2 bump C4 bump

TMV

Unimicron’s Fan-out Chip (Bridge) First Face-down Process

U.S. patent 11,410,933 (Aug. 9, 2022), filed on May 7, 2021.
39
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CoWoS (2.5D IC Integration)
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Packaging Technology Driven by Artificial Intelligence (AI)
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Nvidia's A100 (GPU = 826 mm2) is on a TSV-Interposer



The flagship H100 GPU (14,592 CUDA cores, 80GB of HBM3 capacity, 5,120-bit memory bus) is priced at a 

massive $30,000 (average), which Nvidia CEO Jensen Huang calls the first chip designed for generative AI.
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CoWoS Architecture Evolution for Next Generation HPC 

on 2.5D System in Package
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IEEE/ECTC 2023
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CoWoS (2.5D IC Integration) CoWoS_L (Bridge with Fan-Out RDLs)

TSMC CoWoS Architecture Evolution for Next Generation HPC on 2.5D 

System in Package

ECTC2023

47
TSV-Interposer is replaced by the RI (Reconstituted-Interposer) which consists of Si Bridge (LSI) 

embedded in EMC with fan-out RDLs 
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TSMC’s CoWoS_L 

LSI (Locsl Silicon Interconnect) + Organic Interposer

CoWoS-L
➢ The new interposer which consists of multiple local Si interconnect (LSI or bridge) w/o TSV and global 

integrated fan-out (InFO) redistribution layers (RDL) to form a reconstituted interposer (RI). 

➢ The small-size LSI (bridge) inherits all the attractive features of TSV-interposer by retaining sub-micron Cu 

interconnects, through silicon vias (TSV), and embedded deep trench capacitor (eDTC) to ensure good 

system performance, while avoids the issues associated with one large TSV-interposer, such as yield loss. 

ECTC2023
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Fan-Out Embedded Bridge with TSV (FO-EB-T) Package 

Characterization and Evaluation

ECTC2023TSV-Interposer is replaced by the FO-EB-T, which consists of Si Bridge with TSVs embedded in the 

EMC with fan-out RDLs 
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Intel has announced a new glass-substrate 

technology for the next generation of high-

power processors.

Intel is on the path to delivering 1 trillion 

transistors on a package by 2030 and its 

ongoing innovation in advanced packaging 

including glass substrates will help 

achieve this goal.

On September 18, 2023, …
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Intel Unveils Industry-Leading Glass Substrates to 

Meet Demand for More Powerful Compute
Glass substrates help overcome limitations of organic materials by enabling an order of magnitude 

improvement in design rules needed for future data centers and AI products.

Intel PR, September 18, 2023

What’s New: Intel today announced one of the industry’s first glass substrates for next-generation advanced 

packaging, planned for the latter part of this decade. This breakthrough achievement will enable the continued scaling 

of transistors in a package and advance Moore’s Law to deliver data-centric applications.

“After a decade of research, Intel has achieved industry-leading glass substrates for advanced packaging. We look 

forward to delivering these cutting-edge technologies that will benefit our key players and foundry customers for 
decades to come.”

–Babak Sabi, Intel senior vice president and general manager of Assembly and Test Development

Why It Matters: Compared to today’s organic substrates, glass offers distinctive properties such as ultra-low flatness 

and better thermal and mechanical stability, resulting in much higher interconnect density in a substrate. These 

benefits will allow chip architects to create high-density, high-performance chip packages for data-intensive workloads 

such as artificial intelligence (AI). Intel is on track to deliver complete glass substrate solutions to the market in the 

second half of this decade, allowing the industry to continue advancing Moore’s Law beyond 2030.
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By the end of the decade, the semiconductor industry will likely reach its limits on being able to scale transistors on a 

silicon package using organic materials, which use more power and include limitations like shrinkage and warping. 

Scaling is crucial to the progress and evolution of the semiconductor industry, and glass substrates are a viable and 

essential next step for the next generation of semiconductors.

How It Works: As the demand for more powerful computing increases and the semiconductor industry moves into 

the heterogeneous era that uses multiple “chiplets” in a package, improvements in signaling speed, power delivery, 

design rules and stability of package substrates will be essential. Glass substrates possess superior mechanical, 

physical and optical properties that allow for more transistors to be connected in a package, providing better scaling 

and enabling assembly of larger chiplet complexes (called “system-in-package”) compared to organic substrates in use 

today. Chip architects will have the ability to pack more tiles – also called chiplets – in a smaller footprint on one 

package, while achieving performance and density gains with greater flexibility and lower overall cost and power 

usage.

About the Use Cases: Glass substrates will initially be introduced into the market where they can be leveraged the 

most: applications and workloads requiring larger form factor packages (i.e., data centers, AI, graphics) and higher 

speed capabilities.

Glass substrates can tolerate higher temperatures, offer 50% less pattern distortion, and have ultra-low flatness for 

improved depth of focus for lithography, and have the dimensional stability needed for extremely tight layer-to-layer 

interconnect overlay. As a result of these distinctive properties, a 10x increase in interconnect density is possible on 

glass substrates. Further, improved mechanical properties of glass enable ultra-large form-factor packages with very 

high assembly yields.
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Glass substrates’ tolerance to higher temperatures also offers chip architects flexibility on how to set the design rules 
for power delivery and signal routing because it gives them the ability to seamlessly integrate optical interconnects, as 
well as embed inductors and capacitors into the glass at higher temperature processing. This allows for better power 
delivery solutions while achieving high-speed signaling that is needed at much lower power. These many benefits 
bring the industry closer to being able to scale 1 trillion transistors on a package by 2030.

How We Do It: Intel has been researching and evaluating the reliability of glass substrates as a replacement for 
organic substrates for more than a decade. The company has a long history of enabling next-generation packaging, 
having led the industry in the transition from ceramic package to organic package in the 1990s, being the first to 
enable halogen and lead-free packages, and being the inventor of advanced embedded die packaging technologies, 
the industry’s first active 3D stacking technologies. As a result, Intel has been able to unlock an entire ecosystem 
around these technologies from equipment, chemical and materials suppliers to substrate manufacturers.

What’s Next: Building on the momentum of recent PowerVia and RibbonFET breakthroughs, these industry-leading 
glass substrates for advanced packaging demonstrate Intel’s forward focus and vision for the next era of compute 
beyond the Intel 18A process node. Intel is on the path to delivering 1 trillion transistors on a package by 2030 and its 
ongoing innovation in advanced packaging including glass substrates will help achieve this goal.
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Panel size: 515mm x 510mm

Intel Glass Panel
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Intel’s Fully Functional Test Chip

➢ Altogether, Intel has spent over a billion dollars on glass core R&D thus far in Chandler, Arizona.

➢ The glass core was made very thick – on the order of 1mm – in order to prove that TGVs would work with 

such a thick core. 

➢ 3 layers of RDL, and the TGVs have a pitch of 75µm. Die-to-die bump pitch < 36µm.

➢ Intel claims that glass substrates allow for a much higher interconnect density (i.e., finner pitches), which 

is crucial for power delivery and signal routing of next-generation SiPs.

➢ As part of the company’s broader initiative to become a world class contract foundry, Intel will be offering 

glass core substrates to IFS (Intel Foundry Services) customers in due time (maybe near the end of this 

decade). 
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Challenges on Glass Substrate

According to Ann Kelleher, executive VP of technology development 

at Intel:

➢Glass substrates will be more expensive to produce and package than tried-and-

tested organic substrates. 

➢There will be the yield issues at the start.

➢Glass substrates will need to build a viable ecosystem for commercial 

production. This includes necessary tooling and supply capacity. That’s why 

Intel is working closely with glass-handling equipment and material suppliers. 

➢The company will also have to find ways to outsource test and assembly of 

these new substrates.
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Summary 

Some important results and recommendations are summarized as follows. 

➢ Silicon photonics are the semiconductor integration of EIC and PIC on a 

silicon substrate (wafer) with CMOS technology. 

➢ CPO are heterogeneous integration packaging methods to integrate the 

OE which consists of PIC and the EE which consists of EIC as well as the 

switch ASIC. 

➢ Roadmaps of OBO, NPO, and CPO have been provided. 

➢ Various (9 different) 3D heterogeneous integrations of PIC and EIC have 

been proposed. 

➢ Various 2D and 3D heterogeneous integrations of ASIC Switch, PIC and 

EIC (CPO) w/o bridge have been proposed. 

➢ Various heterogeneous integration of ASIC Switch, PIC and EIC (CPO) on 

glass substrate have been proposed. 
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Thank You Very Much for Your 

Attention!

☺
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