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Intel Silicon Phonics: Optics at Silicon Scale

Silicon Silicon Silicon
Integration Manufacturing

—gpe..
Silicon laser

Integrated Optics, Enabled by Intel's Advanced CMOS Mfg Process at Intel Automated On-wafer Optical, Electrical,
Hybrid Laser Technology Fabs On 300mm Wafers and High-speed Test

InP for lasers, SOAs, PDs Wafer-level burn-in

Wafer-scale manufacturing of optical sub-assembly; known good die at wafer level

EPIC WPTS, San Francisco, January 24th, 2022



A hybrid silicon laser. (a) Key components. (b) Scanning electron
micrograph of the fabricated device. (c) Schematic.

p Contact n-InP Cladding

n Contact

l11-V Region L Proton

] Buried Oxide Indium phosphide (InP), the light-emitting
Silicon Substrate &\ ) material, is bonded to the top of the silicon
Silicon Waveguide with a thin layer of glass glue.

s rcmen ox
10um



Intel Is the only company who Is
In high volume manufacturing
of Silicon Photonic



Co-Packaged Optics (CPO)

or

Heterogeneous Integration of
Electrical IC (EIC) and
Photonic IC (PIC) Packaging



(a) Google data center. (b) Transceivers in a data center.

Google Data Center

(b)
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Electrical signal



Transcelvers

Optical

signal _
\\ Transmitter RF circuit design
| /
/
IC design /

/’/ Digital control design

e _~ Mechanical design
Receiver

Electrical signal

» Optical Transceiver is a key component of an optical transmission system that permits coupling of the
transmission medium with the active components of the chain, such as switches, routers - optical
interfaces or any optical transport equipment.

» Transceiver is defining the process of converting electric signaling toward the optical transmission with the
help of TOSA (Transmission Optical Sub Assembly) or Tx module and performing inverse action through
the ROSA (Receiver Optical Sub Assembly) or Rx module.

» A TOSA contains a semiconductor laser diode (LD) and laser driver, while a ROSA contains a photodiode
(PD), optical interface such as lens, TIA (transimpedance amplifier), and passive electrical interface.

» TOSA module converts the electrical signal to the optical transmission light that lands on the fiber. The
ROSA is used to receive an optical signal from a fiber and convert it back into an electrical signal.



Key components in an optical transceiver. (a) TOSA and ROSA.
(b) PIC ang

Transceiver
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Pluggable Transceiver

Pluggable Transceiver

Fiber

PCB




Pluggable Optics

ASIC (LR
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Transceiver +—
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Optics Substrate
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Co-Packaged Optics
(CPO)




Intel’s co-packaged optics switch

SILICON PHOTONICS CO-PACKAGED SWITCH ;

Switch package

Photonic

Integration for Power and Performance scaling

Lower-loss channel = lower-power |/O Silicon Photonics
No on-board retimers = lower system power and cost Optical

Enables higher density
Reduced cost of photonics ($/Gbps) through integration compo"ents

Reduced cost (system) through simpler systems and deployment

- Enable bandwidth scalability: break constraint of copper and front-plate pluggable




Broadcom’s co-packaged optics switch



https://www.servethehome.com/awesome-broadcom-co-packaged-optics-and-silicon-photonics-ocp-summit-2022/broadcom-co-packaged-optics-ocp-summit-2022-2/

2D heterogeneous integration of EIC and PIC

nbump or C4 bump



2D heterogeneous integration of ASIC, EIC and PIC. (a) On an ordinary co-packaged substrate. (b) On TSV-
interposer or organicinterposer. (c) On TSV-interposer or organicinterposer and then on package substrate.
EIC PIC
<«—— Hbump

~ASIC Optical Substrate (Optional)
nbump or C4 bump— <«——Mbump or C4 bump
Co-Packaged Substrate

(a) I ' I I ' I ' l I ' ' '<—BGABa||

EIC PIC

«—— pbump
Optical Substrate (Optional)

(b) nbump— «——pbump
% Co-Packaged Substrate (TSV-interposer or Organic-interposer)

<«——BGA Ball

EIC PIC
«—— pbump
Optical Substrate (Optional)
(c) nbump_—» _ - «——Mbump
% Co-Packaged Substrate (TSV-interposer or Organlc-lnterposer)__—4__Hbump or C4 bump
Package Substrate

ll' III III Ill4——BGABa|I



2D heterogeneous integration of ASIC, EIC and PIC on a co-packaged
substrate (TSV-interposer)
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2D heterogeneous integration of ASIC, EIC and PIC on a co-packaged
substrate (organic interposer)
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2D heterogeneous integration of ASIC, EIC and PIC with silicon bridges on a copackaged
substrate. (a) Bridge with pbumps. (b) Bridge with hybrid bonding. (c) EMIB.

ubump Si Bridge
nbump or C4 bum s_w&ZI HE <«——Mbump or C4 bumps

) O ® ©® 09 009 0 e @ BbBGABl

(a)

Cu-Cu hybrid Bonding Cu-Cu hybrid Bonding

Si
EIC " /sigee

<«——Mbump or C4 bumps

nbump or C4 bumps—

(b) ) O © ® 0 ® 00 ® 0 ® ® BGABal

) @ ®© 0 ® e W & @ ——BGABall



Intel’s EMIB (Embedded Multi-die Interconnect Bridge)

C4 or C2 bumps CHIP CHIP CHIP
102 110G 102 110 102

e e e
TR i

(RS ESYS BRSNS

Solder Ball
EMIB Basmati Rice

—= Chip 1 = C2 bump C4 bump
- ¢

= ) - P

L b == _=Chj
vgw P 2 s

C2 Microbumps

--------------------------------------------
-------------

— EMlB——— p——
ECTC2016 Build-up Package Substrate

The objective of EMIB is to replace TSV-Interposer (2.5D IC Integration) 26



Intel’s FPGA (Agilex) with EMIB

Micro Solder Joint (bump)
C4 Solder Joint C4 Solder Joint

\ HBM
(']

Solder Joint

Micro Solder Joint (bump)

Package Substrate

Shipped in
September 2019
27



Intel’s Chiplet Design and Heterogeneous Integration Packaging:-
Ponte Vecchio GPU

Multiple Top Die Tiles

||'|‘ﬁ-}I - W
I"'--_.II-:.--I-" e %, < 50um Die-Die Interconnect Pitch
L ]
s = ||l | I — .
L
Active or Passive Base Die
» 47 Chiplets (16 HPC) . m— Compute Tile
» 16 Thermal dies -
> Max. Size = 41MM?  cc—— Rambo Tile (8)
Foveros
BaseTie (2)
e Tile (8)

Ye Link Tile (2)
Multi Tile Package

EMBTIe (11)

rry
'''''
-

IEEE/ISSCC 2022 28

77.5mm x 62.5mm (11-2-11)



EMIB (Embedded Multi-Die Interconnect Bridge) for Sapphire Rapids

Cem]  [EmBl Cems] [CEmel

(EmiBl [EmiB]  [EmiB]
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IBM’s Direct Bonded Heterogeneous Integration
(DBHI) Si Bridge

C4 Bump NCP
/ /
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ECTC2021
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IBM’s DBHi Key Process Steps

CHIPLET

(b)

Build-up Package Substrate with Cavity

a) C2bumps on the bridge, while C4 bumps on the chiplet.

b) Ordinary build-up package substrate with a cavity.
31



IBM(’s) DBHi Key Process Steps
a (b)

Underfill

C4 bump' Bridge Chip 2 Chip 1
i1l i111i1
Chip 1  wbump TCB +NCE Bridge

Heater
(c)
NN NN
Underfill Bridge C4 Mass Reflow
(Optional

Organic Package Substrate with cavity Cavity

a) TCB/NCP of bridge die with C2 ypbumps on Chip 1 with C4 bumps (NCP becomes the underfill).
b) TCB/NCP of Chip 2 with C2 pbumps on the bridge with the bonded Chip 1. 32
c) Placethe module (bridge + Chip 1 + Chip 2) on the substrate and mass reflow the C4 bumps. Apply the capillary underfill to the C4 bumps.



Direct Bonded Heterogeneous Integration (DBHi): Surface bridge
approach for die tiling

Claudia Cristina Barrera Pulido Sayuri Kohara Aakrati Jain Thomas Wassick
IBM Systems, IBM Research — Tokyo IBM Research — Albany IBM Systems
Bromont, Canada Kawasaki, Japan Albany, USA East Fishkill, USA
Claudia.Cristina. Barrera. Pulido@ sayurik@jp.ibm.com aakrati.jain(@ibm.com wassickt(@us.ibm.com
ibm.com
Divya Taneja Philip Mclnnes Akihiro Horibe Isabel de Sousa
IBM Sysytems IBM Systems, IBM Research — Tokyo IBM Systems
Bromont, Canada Bromont, Canada Kawasaki, Japan Bromont, Canada
Divya.Taneja3(@ibm.com philip.mcinnes(@ibm.com hory(@jp.ibm.com idesousaf@ca.ibm.com
; Lid
Thermal Interface Material l uC|4

Lid Adhesive

Si Bridge Cu Pillars

Chip A Chip B
!!!_!Illﬂ'!’{ T R —— 'Ql!‘!!l!‘?!!liil

f = =< C2Cu-pillar bump Si Bridge T B = ]

ECTC2023



Improvements of IBM’s DBHI

» The Si-bridge is not in the cavity of a package substrate
» Thickness of Si Bridge = 60 - 70um

» Dimensions of Bridge = 3.5mm x 2.5mm x 60-70um

» Nonconductive paste — Solder and Reflow

Chip A Chip B
SEEREREEgRgE —————r i L] 123113331

b (————

i C2 Cu-pillar bump Si Bridge uC4 bump e

Package

- Chip-Side

-—p Bridge-Side Package-Side

ECTC2023
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Apple’s UltraFusion
(M1 Ultra = M1 Max + M1 Max + Si Bridge)

:7.E;E;A;V;_;".r;i'._:_;ji‘;;"..‘.i.ra‘z»;rz::.»;_'ti;__‘.;_'.:}'.»::-.'....i............,t.j,.;:;::7::::V:ﬂir_srir;:f::i::;r:;;7;;:::7;:.;:7: P I.lbump
E 8 8 C4 bump
Build-up layers

UltraFusion — Apple’s innovativ packaging architecture that interconnects the die of two M1 Max chips to
create a system on a chip (SoC) with unprecedented levels of performance and capabilities. TSMC assembled
the package with silicon bridge what TSMC called LSI (local silicon interconnect).

Shipped in March 2022 .


https://images.anandtech.com/doci/17306/UltraFusion.jpg

Apple’s UltraFusion with TSMC’s LSI (Bridge) Shipped in March 2022
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AMD’s Instinct MI250X Compute Accelerator
(GPU/HBI\/IZ Interfaced with Si Bridge on Fan-out RDLS

AMD INSTINCT MI200 SERIES

KEV INNOV/ATINNS

‘ . , [
TWO e 2ND GEN MATRIX
AMD CONA™2 DIES - ==l CORES FOR HPC & Al

ULTRA HIGH BANDWIDTH - ' ‘ EIGHT STACKS
DIE INTERCONNECT ; ' OF HBM2E

COHERENT CPU-TO-GPU 2.5D ELEVATED
INTERCONNECT FANOUT BRIDGE (EFB)

Si bridge on fan-out RDLs ~ MI200 OAM SERIES

b Si Brid
Hoump | bridge Build-up Layers

Package Substrate ‘ \




Bridge Embedded in Fan-Out
Epoxy Molding Compound (EMC)
with Redistribution-Layers
(RDLS)



Unimicron’s Fan-out Chip (Bridge) First Face-down Process

116 116

)
v
RDLs| — “~—_r— 7 — }114

Si Bridge pn

110

C2bump C4bump

180 - 160 13'51. 13{'1. 160

1 180
137, Chindl . I¥_JChip? -137
160 “ﬁl '@}' ‘Tlé':ﬁ ﬁ 160

T
o " o ——
RDLs Eﬂil iy ﬁ"—lﬂ; 121 e F " 126
5 Ee————— T ;J 1
EMC/ABF |_S.I_B_LLd.g_e_x ”;}1“] TMV ~122
143

" @ 170 123 " @ 170 C4 bump

U.S. patent 11,410,933 (Aug. 9, 2022), filed on May 7, 2021.
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Packaging Technology Driven by Artificial Intelligence (Al)

HBM

DRAM
SoC

CPU/GPU/FPGA/ASIC

C2 bump Logic Base

TSV-Interposer

A R A11111114

C4 bump

) GO G G G G |

CoWoS (2.5D IC Integration)



NVIDIA A100

SUPERCHARGING HIGH PERFORMING Al SUPERCOMPUTING GPU

80 GB HBM2e 2TB/s +
For largest datasets High-memory bandwidth
and models to feed extremely fast GPU
EEEEEEE
3rd-gen Tensor core Multi-instance GPU

Powering Amazon EC2 P4d/P4de instances
3rd-gen NVLink

<3

aWS ® 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved. nV|D|A

\_/‘7



Nvidia's A100 (GPU = 826 mm?) is on a TSV-Interposer
——————————————————

ol DRAM
-
v, & DRAM
" HBM Stack DRAM
GPU - Molding DRAM
DRAM
N \
3 @ S DRAM
Underfill
826m DRAM

_ Logic Die
L § _ HBM Stack & GPU Underfill
TSV-interposer

Interposer Underfill




-
NVIDIA H100 - Coming soon to AWS

THE NEW ENGINE OF THE WORLD'S Al INFRASTRUCTURE

...... EEEEEEE
B
f S ;=.,._,,.,::> NU—
: :
A d chi
dvanced chip Transfc?rmer 2nd-gen MIG
engine
..
: EEEE
. O =
Il . .- L
Confidential 4th-gen . ;
computing NVLink DPX instructions

Powering the next generation of GPU systems on AWS

The flagship H100 GPU (14,592 CUDA cores, 80GB of HBM3 capacity, 5,120-bit memory bus) is priced at a

massive $30,000 (average), which Nvidia CEO Jensen Huang calls the first chip designed for generative Al. @2
NVIDIA

aws_’ ® 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.



NVIDIA H100 GPU for Al Application

Logic base

TSV-interposer

_mep @ W
Build-up PaEkage substrate
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CoWoS Architecture Evolution for Next Generation HPC
on 2.5D System in Package

Yu-Chen Hu Yu-Min Liang Hsieh-Pin Hu Chia-Yen Tan
Taiwan Semiconductor Taiwan Semicondutor Taiwan Semicondutor Taiwan Semicondutor
Manufacturing Company, Ltd Manufaturing Company, Ltd Manufaturing Company, Ltd Manufaturing Company, Ltd
Hsinchu, Taiwan Hsinchu, Taiwan Hsinchu, Taiwan Hsinchu, Taiwan
YCHUQ@tsmc.com YMLIANGA@tsmc.com HPHU@tsmc.com CYTANI@tsmc.com
Chih-Ta Shen Chien-Hsun Lee S. Y. Hou
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» The new interposer which consists of multiple local Si interconnect (LSI or bridge) w/o TSV and global
integrated fan-out (INFO) redistribution layers (RDL) to form a reconstituted interposer (RI).

» The small-size LSI (bridge) inherits all the attractive features of TSV-interposer by retaining sub-micron Cu
interconnects, through silicon vias (TSV), and embedded deep trench capacitor (eDTC) to ensure good
system performance, while avoids the issues associated with one large TSV-interposer, such as yieid loss.
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TSV-Interposer is replaced by the FO-EB-T, which consists of Si Bridge with TSVs embedded in the
EMC with fan-out RDLs
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Similarity between CoWoS-L/FO-EB-T and US 11,410,933
R e Bridge Patent: US 11,410,933
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Various 3D heterogeneous integration of EIC and PIC
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3D heterogeneous integration of ASIC, EIC and PIC. (a) On an ordinary co-packaged substrate. (b) On TSV-
Interposer or organicinterposer. (c) On TSV-interposer or organicinterposer and then on package substrate.
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3D heterogeneous integration of EIC and PIC on a
co-packaged substrate (organic interposer)




3D heterogeneous integration of ASIC, EIC and PIC on a co-packaged substrate
(TSV interposer)
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Nvidia’s 3D integration of SoC, HBM, EIC and PIC on
co-packaged substrates (TSV interposer)
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The present switch (25.6Tbit/s) vs.
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3D Heterogeneous Integration of EIC and PIC (B)
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Another Co-packaged optics method for 51.2Tbit/s switch
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3D heterogeneous integration of ASIC, EIC and PIC with silicon bridges on a

co-packaged substrate
Si Bridge

Hbump EIC

nbump or C4 bump—» <«—— pbump or C4 bump

BGA Ball

(a) PCB

pbum

msc )

—

C4 bum «—— C4 bump

(b)

BGA Ball

B

Si Bridge o EIC
ASIC
nbump —» N | <« Hbump

() RDLs 3 Co-Packaged Substrate (Organic-Interposer)
<~ ubump or C4 bump

) W W W —BGA Ball
PCB

TMV
.



An example on 3D heterogeneous integration of ASIC, EIC and PIC
with silicon bridges on a co-packaged substrate
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On September 18, 2023, ...

Intel has announced a new glass-substrate

technology for the next generation of high-
pOwWer processors.

Intel 1s on the path to delivering 1 trillion
transistors on a package by 2030 and its
ongoing innovation in advanced packaging

Including glass substrates will help
achieve this goal.


https://www.intel.com/content/www/us/en/newsroom/news/intel-unveils-industry-leading-glass-substrates.html

Intel Unvells Industry-Leading Glass Substrates to
Meet Demand for More Powerful Compute

Glass substrates help overcome limitations of organic materials by enabling an order of magnitude
improvement in design rules needed for future data centers and AI products.

Intel PR, September 18, 2023

What's New: Intel today announced one of the industry’s first glass substrates for next-generation advanced
packaging, planned for the latter part of this decade. This breakthrough achievement will enable the continued scaling
of transistors in a package and advance Moore’s Law to deliver data-centric applications.

"After a decade of research, Intel has achieved industry-leading glass substrates for advanced packaging. We look
forward to delivering these cutting-edge technologies that will benefit our key players and foundry customers for
decades to come.”

—Babak Sabi, Intel senior vice president and general manager of Assembly and Test Development

Why It Matters: Compared to today’s organic substrates, glass offers distinctive properties such as ultra-low flatness
and better thermal and mechanical stability, resulting in much higher interconnect density in a substrate. These
benefits will allow chip architects to create high-density, high-performance chip packages for data-intensive workloads
such as artificial intelligence (AI). Intel is on track to deliver complete glass substrate solutions to the market in the

second half of this decade, allowing the industry to continue advancing Moore’s Law beyond 2030.
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By the end of the decade, the semiconductor industry will likely reach its limits on being able to scale transistors on a
silicon package using organic materials, which use more power and include limitations like shrinkage and warping.
Scaling is crucial to the progress and evolution of the semiconductor industry, and glass substrates are a viable and
essential next step for the next generation of semiconductors.

How It Works: As the demand for more powerful computing increases and the semiconductor industry moves into
the heterogeneous era that uses multiple “chiplets” in a package, improvements in signaling speed, power delivery,
design rules and stability of package substrates will be essential. Glass substrates possess superior mechanical,
physical and optical properties that allow for more transistors to be connected in a package, providing better scaling
and enabling assembly of larger chiplet complexes (called “system-in-package”) compared to organic substrates in use
today. Chip architects will have the ability to pack more tiles — also called chiplets — in a smaller footprint on one
package, while achieving performance and density gains with greater flexibility and lower overall cost and power
usage.

About the Use Cases: Glass substrates will initially be introduced into the market where they can be leveraged the
most: applications and workloads requiring larger form factor packages (i.e., data centers, Al, graphics) and higher
speed capabilities.

Glass substrates can tolerate higher temperatures, offer 50% less pattern distortion, and have ultra-low flatness for

improved depth of focus for lithography, and have the dimensional stability needed for extremely tight layer-to-layer
interconnect overlay. As a result of these distinctive properties, a 10x increase in interconnect density is possible on

glass substrates. Further, improved mechanical properties of glass enable ultra-large form-factor packages with very
high assembly yields.



Glass substrates’ tolerance to higher temperatures also offers chip architects flexibility on how to set the design rules
for power delivery and signal routing because it gives them the ability to seamlessly integrate optical interconnects, as
well as embed inductors and capacitors into the glass at higher temperature processing. This allows for better power
delivery solutions while achieving high-speed signaling that is needed at much lower power. These many benefits
bring the industry closer to being able to scale 1 trillion transistors on a package by 2030.

How We Do It: Intel has been researching and evaluating the reliability of glass substrates as a replacement for
organic substrates for more than a decade. The company has a long history of enabling next-generation packaging,
having led the industry in the transition from ceramic package to organic package in the 1990s, being the first to
enable halogen and lead-free packages, and being the inventor of advanced embedded die packaging technologies,
the industry’s first active 3D stacking technologies. As a result, Intel has been able to unlock an entire ecosystem
around these technologies from equipment, chemical and materials suppliers to substrate manufacturers.

What's Next: Building on the momentum of recent PowerVia and RibbonFET breakthroughs, these industry-leading
glass substrates for advanced packaging demonstrate Intel’s forward focus and vision for the next era of compute
beyond the Intel 18A process node. Intel is on the path to delivering 1 trillion transistors on a package by 2030 and its
ongoing innovation in advanced packaging including glass substrates will help achieve this goal.



Motivation for Glass Core Substrates

Organic Substrate Glass Core Substrate

Organic substrates leverage traditional PCB-like Glass core substrate enable significant improvement to both
cores with woven glass laminates electrical and mechanical properties

> Provides a low cost, easily manufacturable material set with off Tunable Modulus and CTE closer to silicon = Large form factor enabling
the shelf laminates available from leading suppliers Dimensional stability > Improved feature scaling
High (~10x) through-hole density = improved routing and signaling
Low Loss < High speed signaling
Higher Temperature capability 2 Advanced Integrated Power Delivery

Glass Core has similar properties as Si 2 Dimensional stability and ability to scale

s 5 -
*Based on internal analysis of Intel products and projections of future Intel products lntel



https://images.anandtech.com/doci/20058/Glass%20Core%20Substrate%20Presentation%20Deck_6.png

Intel Glass Panel

Panel size: 515mm x 510mm
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Intel’s Fully Functional Test Chip

Altogether, Intel has spent over a billion dollars on glass core R&D thus far in Chandler, Arizona.

The glass core was made very thick —on the order of Lmm —in order to prove that TGVs would work with
such athick core.

3 layers of RDL, and the TGVs have a pitch of 75um. Die-to-die bump pitch < 36um.

Intel claims that glass substrates allow for a much higher interconnect density (i.e., finner pitches), which
is crucial for power delivery and signal routing of next-generation SiPs.

As part of the company’s broader initiative to become a world class contract foundry, Intel will be offering
glass core substrates to IFS (Intel Foundry Services) customers in due time (maybe near the end of this

decade).
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Challenges on Glass Substrate

According to Ann Kelleher, executive VP of technology development
at Intel:

» Glass substrates will be more expensive to produce and package than tried-and-
tested organic substrates.

» There will be the yield issues at the start.
» Glass substrates will need to build a viable ecosystem for commercial
production. This includes necessary tooling and supply capacity. That’s why

Intel Is working closely with glass-handling equipment and material suppliers.

» The company will also have to find ways to outsource test and assembly of
these new substrates.
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3D heterogeneous integration of EIC and PIC with a glass interposer
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3D heterogeneous integration of ASIC, EIC and PIC on a co-packaged
substrate (glass interposer)
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Process in fabrication of the 3D heterogeneous integration of ASIC,
EIC and PIC on a co-packaged substrate (glass interposer)
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Summary
Some important results and recommendations are summarized as follows.

» Silicon photonics are the semiconductor integration of EIC and PIC on a
silicon substrate (wafer) with CMOS technology.

» CPO are heterogeneous integration packaging methods to integrate the
OE which consists of PIC and the EE which consists of EIC as well as the
switch ASIC.

» Roadmaps of OBO, NPO, and CPO have been provided.

» Various (9 different) 3D heterogeneous integrations of PIC and EIC have
been proposed.

» Various 2D and 3D heterogeneous integrations of ASIC Switch, PIC and
EIC (CPO) w/o bridge have been proposed.

» Various heterogeneous integration of ASIC Switch, PIC and EIC (CPO) on
glass substrate have been proposed.
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